Name \qquad Date \qquad Period \qquad

Genetics Review

MULTIPLE CHOICE: Circle the answer that best completes the sentence.

The Austrian monk whose experiments with pea plants were the beginning of our understanding of genetics was \qquad .
A. Albert Einstein
B. Albus Dumbledore
C. Alfred Nobel
D. Gregor Mendel

The different alternatives or choices for a gene are called \qquad _.
A. generations
B. traits
C. tetrads
D. alleles

Crossing organisms from the F_{1} generation produces the \qquad generation.
A. P_{2}
B. F_{2}
C. P_{1}
D. None of these-you can't cross F_{1} organisms with each other!

Crossing organisms from the P_{1} generation produces the \qquad generation.
E. P_{2}
F. F_{1}
G. F_{2}
H. None of these-you can't cross P_{1} organisms with each other!

Mendel's "factors" or "particles" are now called \qquad .
A. gametes
B. genes
C. cells
D. zygotes

Self-pollination produces seeds with genetic information from \qquad parent plant(s).
A. ONE
B. TWO
c. THREE

What pattern did Mendel see when crossing pure TALL with pure SHORT pea plants?
A. ALL the F_{1} offspring were short, but the F_{2} generation were all tall.
B. ALL the F_{1} offspring were tall, but the F_{2} generation were all short.
C. ALL the F_{1} offspring were short, but 50% the F_{2} generation were all tall and 50% were short.
D. ALL the F_{1} offspring were tall, but 25% the F_{2} generation were short and 75% were tall.

WHICH OF THE FOLLOWING IS TRUE of MENDELIAN INHERITANCE?

A. If a dominant allele is present, the recessive allele won't be seen.
B. If a recessive allele is present, the dominant allele won't be seen.
C. Both recessive and dominant alleles show if present

Pollen is produced by the \qquad part of the flower.
A. female
B. male

TRUE OR FALSE

Circle T if the statement is TRUE. Circle F if the statement is FALSE.
If false, make corrections to the underlined words to make the statement true.
T F Dominant alleles are represented by a lower case letter.

T F Mendel's Law of Fertilization explains why alleles end up in different gametes following meiosis.

MATCH THE WORD FROM THE WORD BANK WITH ITS DEFINITION:

GENETICS HEREDITY TRAIT PURE-BREEDING

DOMINANT RECESSIVE ALLELE FERTILIZATION

A characteristic that can be observed such as hair color, seed shape,
flower color, etc

The joining of a sperm and egg to make a zygote
A gene choice that MASKS ANOTHER choice for a trait
A gene choice that IS MASKED BY ANOTHER choice for a trait
the branch of biology that studies how characteristics are transmitted
from parent to offspring

An organism that always produces offspring identical to itself if self pollinated

PUNNETT SQUARE PRACTICE

Use a Punnett Square to show the possible offspring from the crosses given and answer the questions:

IN PEAS:	$R=$ round		
$r=$ wrinkled	$T=$ tall		
$t=$ short		\quad	$Y=$ yellow peas
:---:			
$y=$ green peas	\quad		
:---:			
flowers			

MAKING MONOHYBRID CROSSES:

What is the genotype of a HOMOZYGOUS YELLOW SEED plant? \qquad
What is the genotype of A HOMOZYGOUS GREEN SEED plant? \qquad
What is the genotype of a HETEROZYGOUS YELLOW plant? \qquad
Make a cross between a PURE YELLOW SEED parent and a PURE GREEN SEED parent.

Genotypes of Parents: \qquad X \qquad

POSSIBLE OFFSPRING GENOTYPES
POSSIBLE OFFSPRING PHENOTYPES
What is the probability an offspring will show the DOMINANT TRAIT (YELLOW SEEDS)? \qquad \%

What is the probability an offspring will show the RECESSIVE TRAIT (GREEN SEEDS)? \qquad \%

What is the genotype of a PURE PURPLE FLOWERED plant? = \qquad

What is the genotype of a PURE WHITE FLOWERED plant? = \qquad
What is the genotype of a HYBRID PURPLE FLOWERED plant? = \qquad
Make a cross between a HOMOZYGOUS PURPLE FLOWERED plant and a HOMOZYGOUS WHITE FLOWERED plant.

Genotypes of Parents: \qquad
\qquad

POSSIBLE OFFSPRING GENOTYPES \qquad
POSSIBLE OFFSPRING PHENOTYPES \qquad

What is the probability an offspring will show the DOMINANT TRAIT (PURPLE FLOWERS)?
\qquad \%

What is the probability an offspring will show the RECESSIVE TRAIT (WHITE FLOWERS)?
\qquad \%

WHAT IS THE GENOTYPE OF A HOMOZYGOUS TALL plant? \qquad
WHAT IS THE GENOTYPE OF A PURE SHORT plant? \qquad
Make a cross between a HOMOZYGOUS TALL plant and a PURE SHORT plant. Genotypes of Parents: X \qquad

POSSIBLE OFFSPRING GENOTYPES

What is the probability an offspring will show the DOMINANT TRAIT (TALLNESS)? \%

What is the probability an offspring will show the RECESSIVE TRAIT (SHORTNESS)?
\qquad \%

SEE A PATTERN FOR HOMOZYGOUS (P_{1}) MONOHYBRID CROSSES:
If you cross plants that are PURE DOMINANT for a trait with plants that are PURE RECESSIVE for that trait, \qquad \% of the offspring will show the DOMINANT trait and the \qquad trait will not show at all.

USE THE PATTERN ABOVE TO MAKE PREDICTION ABOUT A CROSS

If you cross a HOMOZYGOUS ROUND SEED plant with a PURE WRINKLED SEED plant 100\% will look \qquad 0\% will look \qquad
The offspring will have a 100% probability of having the \qquad genotype.

* * * * * * * * *

MAKE SOME HETEROZYGOUS MONOHYBRID CROSSES

A black coat (B) is DOMINANT in guinea pigs. A brown coat (b) is RECESSIVE.
What is the genotype of a HOMOZYGOUS BLACK guinea pig? = \qquad
What is the GENOTYPE of a HETEROZYGOUS BLACK guinea pig? = \qquad
What is the GENOTYPE of a brown guinea pig? = \qquad

Make a cross between TWO HETEROZYGOUS BLACK guinea pigs.
Genotypes of Parents: \qquad X \qquad

POSSIBLE OFFSPRING GENOTYPES

POSSIBLE OFFSPRING PHENOTYPES
What is the probability that a baby will be black? \qquad \%

What is the probability that a baby will be brown? \qquad \%

What is the probability the baby will be a HYBRID? \qquad \%

What is the probability the baby will be HOMOZYGOUS DOMINANT? \qquad \%

What is the probability the baby will be HOMOZYGOUS RECESSIVE? \qquad \%

* * * * * * * * * * * Purple fur (P) is DOMINANT in monsters. Yellow fur (p) is RECESSIVE.

What is the genotype of a PURE PURPLE monster? \qquad
What is the GENOTYPE of a HETEROZYGOUS purple monster? \qquad What is the GENOTYPE of a YELLOW monster? \qquad

Make a cross between TWO HETEROZYGOUS PURPLE MONSTERS.
Genotypes of Parents: \qquad X \qquad

What is the probability that a baby will be purple? \qquad \%

What is the probability that a baby will be yellow? \qquad \%

What is the probability the baby will be a heterozygous? \qquad \%

What is the probability the baby will be HOMOZYGOUS DOMINANT? \qquad \%
What is the probability the baby will be HOMOZYGOUS RECESSIVE? \qquad \%

Tallness (T) is DOMINANT in pea plants. Shortness (\dagger) is RECESSIVE.
What is the GENOTYPE of a HYBRID TALL pea plant? \qquad
What is the GENOTYPE of a SHORT pea plant? \qquad
Make a cross between two HYBRID TALL pea plants. Genotypes of Parents: \qquad X \qquad

POSSIBLE OFFSPRING GENOTYPES

POSSIBLE OFFSPRING PHENOTYPES \qquad

What is the probability that an offspring plant will be tall? \qquad \%

What is the probability that an offspring plant will be short? \qquad \%

What is the probability that an offspring plant will be a HYBRID? \qquad \%

What is the probability that an offspring plant will be HOMOZYGOUS DOMINANT? \qquad \%

What is the probability that an offspring plant will be HOMOZYGOUS RECESSIVE? \qquad \%

SEE A PATTERN FOR HETEROZYGOUS $\left(F_{1}\right)$ MONOHYBRID CROSSES:

If you cross 2 parent plants that are BOTH HETEROZYGOUS for a trait the offspring will show a \qquad : \qquad phenotypic ratio.
___ \% of the offspring will show the DOMINANT trait and \% of the offspring will show the RECESSIVE trait.

USE DOMINANT OR RECESSIVE TO FILL IN THE BLANKS BELOW:
$\frac{1}{4}$ of the offspring will have two \qquad alleles, $\frac{1}{2}$ will be hybrids with one \qquad and one \qquad allele, and $\frac{1}{4}$ will have two \qquad alleles.

USE THE PATTERN ABOVE TO MAKE PREDICTION ABOUT A CROSS

If you cross two HETEROZYGOUS ROUND SEED plants
75% will look \qquad 25\% will look \qquad

The probability is:
$\frac{1}{4}$ will have the genotype \qquad $\frac{1}{2}$ will have the genotype \qquad $\frac{1}{4}$ will have the genotype
\qquad

Scientists have been investigating the genetic make up of the residents in Bikini Bottom. Complete the following questions about these inhabitants.

For each genotype below, indicate whether it is HETEROZYGOUS (HE) or HOMOZYGOUS (HO).
\qquad Bb \qquad DD \qquad + \qquad Ff \qquad
Dd \qquad ff \qquad bb \qquad BB \qquad FF \qquad

Determine the PHENOTYPE for each genotype given. IN SPONGE PEOPLE the allele for YELLOW BODY COLOR (y) is DOMINANT to BLUE (y).
$y y=$ \qquad $y y=$ \qquad $y y=$ \qquad

IN SPONGEPEOPLE the allele for SQUARE SHAPE (S) is dominant to ROUND (s).

SS = \qquad Ss = \qquad SS = \qquad

SpongeBob SquarePants recently met SpongeSuzie RoundPants at a dance. SpongeBob is HETEROZYGOUS for his square pants, but Suzie is ROUND.
Create a Punnett square to show the possibilities that could result if SpongeBob and SpongeSuzie had children.

Genotypes of Parents: \qquad X \qquad

What is SpongBob's genotype? \qquad
What is SpongeSuzie's genotype? \qquad
What are the chances a child will have a square shape?
\qquad out of 4 OR \qquad $\%$

What are the chances a child will have a round shape?
\qquad out of 4

OR \qquad \%

In SQUID PEOPLE the allele for LIGHT BLUE SKIN (B) is DOMINANT over the GREEN (b) allele. Everyone in SquidWard's family has light blue skin. His family brags that they are a "purebred" line. He recently married a nice girl with light green skin, which is recessive. Create a Punnett square to show the possible offspring from this match.
\qquad X \qquad

\qquad \%
Would SquidWard's children still be considered "purebreds"? YES NO

EXPLAIN WHY or WHY NOT.

INCOMPLETE DOMINANCE:

In Four O'clock plants RED FLOWERS (R) are INCOMPLETELY dominant over white (r) flowers. Heterozygous plants show a blended intermediate phenotype of PINK flowers.

MAKE A CROSS WITH 2 HETEROZYGOUS FOUR O'CLOCK PLANTS.

Genotypes of Parents: \qquad X \qquad

Genotypes \qquad Genotypic Ratio \qquad Phenotypes \qquad Phenotypic Ratios \qquad

IF the red allele in Four-o'clocks WAS COMPLETELY DOMINANT over the white allele, what would the phenotype be for a plant with Rr genotype? \qquad
\square

You are exploring the jungle and find a new species of plant. Some of the plants have red flowers and some have yellow flowers. You cross a red flowering plant with a yellow flowering plant and all the offspring have orange flowers. You might assume that the alleles for flower color in this plant show \qquad —.
A. complete dominance
B. incomplete dominance
C. codominance

If the red and yellow alleles in the mystery jungle plant above showed CODOMINANCE instead, what might you expect a plant with one red allele and one yellow allele to look like?
A. It would have all red flowers
B. It would have all blue flowers
C. It would have red and yellow flowers together on one plant
D. It wouldn't make any flowers because it is a mutant.

BLOOD TYPES:

In the $A B O$ blood type system the A and B alleles are dominant to O allele, and A and B are codominant to each other.

Make a cross between an $A O$ mom and an BO dad.

What are the possible genotypes of the offspring?
\qquad
\qquad
\qquad
\qquad

What is the probability the offspring will have:
A type blood \qquad \% B type blood \qquad \% O type blood \qquad \% AB type blood \qquad \%

Make a cross between an $A O$ mom and an $B B$ dad.

What are the possible genotypes of the offspring?

What is the probability the offspring will have:
A type blood \qquad \% B type blood \qquad \% O type blood \qquad \% AB type blood \qquad \% * * * * * * * * * * *

Make a cross between an AA mom and an OO dad.

What are the possible genotypes of the offspring?

What is the probability the offspring will have:
A type blood \qquad \% B type blood \qquad \% O type blood \qquad \% AB type blood \qquad \% * * * * * * * *

You are working in the Emergency room and a bleeding patient with type B blood is brought in. You need to give him blood, but the hospital is all out of type B. Circle ALL the types of blood could you safely give him instead.

$$
A \quad A B \quad O
$$

EXPLAIN your choices.

What if the bleeding patient had type $A B$ blood and the hospital was out of $A B$ blood. Circle ALL the types of blood could you safely give him.

$$
\text { A B } \quad 0
$$

EXPLAIN your choices.

JERRY SPRINGER GENETICS:

Wanda tells Jerry Springer that she thinks either Ralph or Fred could be the father of her baby. Wanda's genotype is AO. Wanda's baby has type O blood. Ralph's genotype is AB. Fred's genotype is BO.

Make two crosses to show who could be the father of Wanda's baby.
Ralph X Wanda
Fred X Wanda

Is it possible for Ralph to be the baby's father? YES NO
Is it possible for Fred to be the baby's father? YES NO Does this absolutely PROVE that Fred IS the baby's father? EXPLAIN YOUR ANSWER.

IF Wanda's baby has type O blood, what are the possible genotypes for men who COULD BE the father of Wanda's baby?

IN PEAS:

$R=$ round	$T=$ tall $\quad Y=$ yellow peas	$P=$ purple flowers
$r=$ wrinkled $\quad t=$ short $\quad y=$ green peas	$P=$ white flowers	

MAKING HOMOZYGOUS DIHYBRID CROSSES:
Cross a HOMOZYGOUS TALL, HOMOZYGOUS ROUND pea with a SHORT, WRINKLED pea.
Parent's genotypes

X \qquad

Possible gametes \qquad
\qquad
\qquad

How many out of 16 will be:
\qquad TALL \& ROUND
TALL \& WRINKLED SHORT \& ROUND SHORT \& WRINKLED

Cross a HOMOZYGOUS TALL, HOMOZYGOUS YELLOW pea with a PURE SHORT, GREEN pea.
Parent's genotypes \qquad X \qquad

How many out of 16 will be:
\qquad TALL w/ YELLOW PEAS
TALL w/GREEN PEAS
SHORT w/ YELLOW PEAS
SHORT w/ GREEN PEAS

SEE A PATTERN FOR HOMOZYGOUS (P_{1}) DIHYBRID CROSSES:
If you cross plants that are PURE DOMINANT for TWO TRAITS with plants that are PURE RECESSIVE for TWO TRAITS, __ \% of the offspring will look DOMINANT for BOTH traits and the
\qquad traits will not show at all.

Cross a HETEROZGOUS TALL, HETEROZYGOUS ROUND pea with a PURE SHORT, WRINKLED pea.
\qquad X \qquad

Possible gametes

How many out of 16 will be:
\qquad TALL ROUND
TALL WRINKLED
SHORT ROUND
_ SHORT WRINKLED

Cross a HYBRID TALL, HYBRID YELLOW pea with a HETEROZYGOUS TALL, HETEROZYGOUS YELLOW pea.
Parent's genotypes $\quad \times$
Possible gametes \qquad
\qquad
\qquad
\qquad

How many out of 16 will be:
\qquad TALL w/ YELLOW PEAS
TALL w/ GREEN PEAS
SHORT w/ YELLOW PEAS
SHORT w/ GREEN PEAS

* * * * * * * * * *

FIND THE PATTERN FOR HETEROZYGOUS $\left(F_{1}\right)$ DIHYBRID CROSSES:
If you cross 2 parent plants that are BOTH HETEROZYGOUS for TWO TRAITS, the offspring will show a \qquad : \qquad
\qquad
\qquad phenotypic pattern.

Fill in the blanks below with: DOMINANT or RECESSIVE 9/16 of the offspring will show both \qquad traits. 3/16 will look \qquad for trait 1 and \qquad for trait 2.
3/16 will look \qquad for trait 1 and \qquad for trait 2. 1/16 will look \qquad for both traits.

USE THIS PATTERN TO TELL THE POSSIBLE OFFSPRING OF A HETEROZYGOUS DIHYBRID CROSS WITHOUT USING A PUNNETT SQUARE:

| $R=$ round | $T=$ tall |
| :--- | ---: | ---: |
| $r=$ wrinkled | $t=$ short |
| $R r T t$ | $\times \quad R r T t$ |

9/16 will look \qquad and \qquad
3/16 will look \qquad and \qquad
3/16 will look \qquad and \qquad
1/16 will look \qquad and \qquad

$P=$ purple		$T=$ tall
$\mathrm{p}=$ white		$t=$ shor t
PpTt	X	PpTt

9/16 will look \qquad and \qquad
3/16 will look \qquad and \qquad
3/16 will look \qquad and \qquad
1/16 will look \qquad and \qquad
Rhett and Scarlett are expecting a baby. Rhett's rich uncle has promised them $\$ 1$ million if their baby is a blue eyed boy that can carry on the family name. Brown eyes (B) are dominant over blue eyes (b). Rhett has brown eyes, while Scarlett has blue eyes. Fill in the Punnett square with Rhett and Scarlett's possible gametes.

Rhett's Genotype: BbXy Scarlett's Genotype: bbXX

Possible gametes: \qquad
What genotype does a baby need to be a blue eyed boy and get the $\$ 1$ million?

Use a Punnett square to show the possible genotypes for their baby.

\qquad
Blue eyed boys

What is the probability they will have a BLUE-EYED BOY and get the $\$ 1$ million? \qquad \%

Why does this cross not follow the 9:3:3:1 pattern for DIHYBRID (2 gene) crosses?

Modified from: http://brookings.k12.sd.us/biology

